

Controlling IAQ through Ventilation Design

Professor Cath Noakes CEng, FIHEEM, FIMechE

June 2018

Are you sitting comfortably?

- Are you hot or cold?
- Can you feel a draught?
- What is the air quality like?
- Who is in the room, who are you sitting next to?

The problem with people

- The primary reason for ventilation
- Variable needs within and between individuals
- A poor sampler
- Two way connection with indoor air

What does the air do to us?

What does the air do to us?

Fisk, William J., Usha Satish, Mark J. Mendell, Toshifumi Hotchi, and Douglas P. Sullivan. "Is CO₂ an Indoor Pollutant? Higher Levels of CO₂ May Diminish Decision Making Performance." *ASHRAE Journal* 55, no. 3 (2013): 84-85.

What do we do to the air?

(B. Edge et al., 2005) J. Fluids Eng.

G Settles, Penn State

- Heat source create convection currents
- Movement turbulence
- Breathing introduce contaminants
- Behaviour change settings and flows

Airborne Infection

Source characteristics

CDC, USA

Transport and deposition

Tang J et al. J Hosp Infect 2006; 64: 100-11

Disease characteristics Human characteristics Fluid Dynamics Engineering

Engineering component

Engineering Control

Reduce exposure to indoor and outdoor sources

Ventilation: Dilution, Air distribution, Pressure controls, Extraction, temperature and humidity

Technology: Filtration, air cleaning, decontamination, surface technology

Human behaviour: SMART buildings, prompt actions, prevent access

Human centred ventilation

Traditional focus on ventilating the building – inefficient for energy and limited for IAQ

What do people need?

- Temperature, flow rate, air quality?
- How do they change with time?
- How to bring into design
 - Tools and metrics that properly consider human
 - Performance of existing solutions
 - New technologies and design approaches

Ventilation strategies

Global strategy

- Natural wind and/or buoyancy driven
- Mechanical simple extract fan to full air conditioning
- Hybrid Nat/Mech together or switching
- Air Distribution Approach
 - Mixing/dilution aim to create a "fully mixed" room
 - Displacement create a gradient with clean air supplied from floor or ceiling
 - Personalised local supply for individuals
 - Local Extract Ventilation (LEV) contaminant control

ReFresh Project

Urban Natural Ventilation

6m cube, Silsoe, Bedford, UK

- Quantitive benchmark ANSYS Fluent vs OpenFoam
- Exp + CFD to explore isolated vs array
- Outdoor and Indoor Flows

Flow patterns

Wind normal to window

Wind parallel to window

Ventilation Rate

Isolated cube has higher ventilation rates, but more wind angle dependent

Array smooths out variation but rates generally lower

King M-F, Gough HL et al (2017) Investigating the influence of neighbouring structures on natural ventilation potential of a full-scale cubical building using time-dependent CFD, *Journal of Wind Engineering and Industrial Aerodynamics* 169:265-279

Indoor flow patterns

Air distribution

Short CA; Noakes CJ; Gilkeson CA; Fair A (2014) Functional recovery of a resilient hospital type. *Building Research & Information*, vol. 42, pp.657-684

Infection Risk

- Ward air is well mixed
- Shut the windows = increase the risk

Gilkeson CA, Camargo-Valero MA, Pickin LE, Noakes CJ (2013) Measurement of Ventilation and Airborne Infection Risk in Large Naturally Ventilated Hospital Wards *Building and Environment*, 65:35-48

Mechanical Distribution

- Simulation of airflow in an isolation room
- Steady state simulations at 10 ACH
- Passive scalar released from DIN man - represent human source
- Dispersion of tracer with ventilation supplied:
 - High mixing flow
 - Low displacement flow

High supply, low extract

Low supply, high extract

Horizontal Plane shows low concentration and limited mixing

Vertical Plane shows plume and significant gradient

1.40

1.10

0.90

0.60

0.30

0.00

Personalised ventilation

- Local provision of fresh air
- Reduced ventilation of unoccupied zones
- Study to explore optimisation
 - comfort, energy

Natalie Gilkeson, PhD ongoing

Personalised ventilation

PV nozzle flow consistent with empirical jets

- Distance of jet has significant influence on age of air
- PV flow also changes room airflow pattern

Ventilation metrics – energy vs infection

Noakes CJ, Sleigh PA, Khan A, (2012) Appraising Healthcare ventilation from combined infection control and energy perspectives. *HVAC&R Research*, 18(4); 658-670

Air disinfection/cleaning

- Separate flow and IAQ
- UV-C irradiation, chemical, filters, electrostatic methods
- Widely marketed
 - How well do they work?
 - Where should they be used?
 - Are they safe?
- Complex interaction between airflow, device, microorganisms, chemistry

Total room treatment

Some thoughts for future research

Ventilation is not a bulk parameter – treating it this way is bad for people and energy

Need a better understanding of many aspects

- How buildings and IAQ affect people and when and for how long.
- Transient effects how this affects environment, where there could be advantages, how to measure/model
- Potential for technology approaches to contribute
- Sustainability and design metrics to give equal importance to human aspects

Real Time Transient flows

Amir Khan, Nick Delbosc, Leeds

Any Questions? C.J.Noakes@leeds.ac.uk