



Ricardo Energy & Environment



# **Real World Driving Emissions – Supporting Effective Air Quality Management in the UK**

**Rebecca Rose** 

IAPSC, December 2019

#### ee.ricardo.com

#### **Real World v Lab-based type approval emissions**



Diesel cars: Nitrogen oxides (NO<sub>x</sub>) emissions (in g/km)



Most AQ management strategies are based on lab-based emission factors ...

... Yet significant discrepancies between emissions detected in diesel vehicle exhaust during typeapproval tests and those observed during "real-world" operation (ICCT)

#### **Vehicle Emission Measurements**

- Three main ways of measuring vehicles emissions
  - In the laboratory (like the Ricardo Vehicle Emission Research Centre, VERC)
    - Used for type approval of emission standards
    - Conducted on a rolling road (dynamometer)
    - Good for consistency and reproducibility
  - Portable emission measurement systems (PEMS) (we have five)
    - Instrument individual vehicles
    - Provides real-world driving emissions
    - Limited to relatively few vehicles
  - Vehicle emission remote sensing
- The three techniques are highly complementary, but:
  - Remote sensing provides data that is closely aligned to air quality problems
  - Measures the whole vehicle fleet
  - Can be used to derive emission factors for use in emission inventories









### **Real World Emissions ... Vehicle Emission Remote Sensing**

- The technique:
  - UV/Infrared beam measures emissions different gases absorb in different wavelength regions
  - Measures NO,  $NO_2$  (hence  $NO_x$ ), CO, HC, PM and  $NH_3$
  - 100 scans in 0.5 seconds of exhaust plume
  - Emissions expressed as ratios to CO<sub>2</sub> and through combustion equations, grammes of pollutant per unit fuel (mostly commonly g/kg)
  - Measure speed and acceleration of each vehicle
- Captures each vehicle number plate
  - Detailed cross reference with SMMT derived databases, more than 80 vehicle characteristics ... even down to the colour of the vehicle!



Single lane carriageway





Exhaust plume

#### **Overview of the Ricardo Remote Sensing Programme**





- Working with our Technology Partner OPUS RSE
- Measurements started in March 2017 and have continued since
- >400,000 measurements across UK (and growing)
- 100,000 in London as part of work for ICCT, feeds into the TRUE real-world emissions rating
- Measurements are representative of the UK fleet
- Cover a wide range of conditions
  - All seasons, wide range of temperatures
  - Many speeds and accelerations typical of urban driving

#### Some benefits of Remote Sensing

- RS is complementary to PEMS
- Remote sensing typically is presented with uncertainties in emission estimates
  - Sample size and representivity
- Provides a way of telling whether emissions are statistically different from one another
  - Of use in ranking of vehicles and emission indices
- Provides a consistent basis for comparison
  - On average, the vehicles tested experience the same driving and ambient conditions
  - Difficult or impossible to achieve using PEMS





#### **Comparison of VERS with PEMS**





- Euro 6d-temp passenger car with Lean NO<sub>x</sub> Trap
- Even with few measurements, remote sensing:
  - Agrees well with PEMS overall
  - Could clearly distinguish vehicle aftertreatment being on / off
  - Distinguish between driving conditions of 'soft', 'normal' and 'sporty'

#### Vehicle Emissions Remote Sensing – Enhanced Evidence Base



#### Improves air quality emissions inventories and modelling

- Characterise real-world emissions of vehicles in fleet
- Enhance inventories by providing emission factor temperature dependence
- Significantly reduced modelling uncertainty by replacing assumptions with evidence-based realworld driving emissions information
- Supports the design of cost effective, evidencebased, Clean Air and Low Emission Zone strategy and schemes
- Surveillance to track and assess the effectiveness of policy measures and understand the performance of new vehicles







#### **Surveillance of new vehicles: how effective is Euro 6?**





- Little change in NOx emissions pre-Euro 6
- But significant improvement for Euro 6

#### **Surveillance of new vehicles: how effective is Euro 6?**





- Little change in NOx emissions pre-Euro 6
- But significant improvement for Euro 6

#### staged introduction of 'realworld' driving component to

the testing

Euro 6 is not one thing –

- Euro 6c (09/2017): Lab drive cycle changed to WLTP, more representative of real-world driving
- Euro 6d-TEMP (09/2019):
  RDE on-road PEMS test,
  conformity factor 2.1
- Euro 6d (2020): RDE with conformity factor 1.43
- Manufacturers are using a range of after treatment technologies to meet Euro 6 emission standard and this has an impact...

#### **Euro 6 Diesel Cars – Impacts of RDE regulations**





#### **Emissions of NOx from Euro 6 diesel cars – technology dependence**



- Have identified whether Lean NOx Trap (LNT) or Selective Catalytic Reduction (SCR) used on Euro 6 vehicles
- On average SCR vehicles emit much less NOx than LNT
- Perhaps more of an indication of decreases year on year for SCR than LNT
- Useful to see how Euro 6 improves in future – especially RDE-compliant vehicles



#### **Bus retrofit programs**



- Previous work using RS to measure bus emissions in London and Oxford demonstrated\*:
  - Variation in NOx emissions between buses was large.
  - SCR retrofits to Euro III buses were effective under some, but not all conditions.
- Emerging evidence from recent measurements suggests that current retrofits continue to show mixed performance



Bus measurements in London: TfL Euro III with and without SCRT retrofit system

\*Carslaw et al., Atmospheric Environment 105 (2015) 70-77



#### **Effect of vehicle mileage on NOx**





- Implications for scrappage schemes and other actions to improve air quality
- Continue to track the performance of the latest Euro 6 vehicles with increasingly complex aftertreatment technologies

https://ee.ricardo.com/news/emissions-deterioration-%E2%80%93-the-cinderella-of-vehicl

Ricardo Energy & Environment in Confidence

#### **Effect of ambient temperature**

- Strong temperature dependence for pre-Euro 6 light duty diesel vehicles
- Stronger temperature dependence for LNT Euro 6 cars than SCR
- Important implications for air quality
  - Low temperatures can lead to less efficient dispersion (stable atmosphere)
  - Increased emissions and less efficient dispersion = increased concentrations
  - Increased use of Euro 6 SCR diesels should lead to a decrease in NO<sub>x</sub> emissions, especially under winter episode conditions



Grange et al., Temperature Dependance for Light-Duty Vehicle NOx, Environ. Sci. Technol. 2019, 53, 6587–6596



#### **Real-World Emission Factors to improve inventories**



- Remote sensing provides ratios of pollutants to CO₂ → easy to derive fuel-specific emissions (e.g. grams of NO<sub>X</sub> per kg fuel)
- To calculate g/km emissions need to estimate CO<sub>2</sub> in g/km i.e. the fuel consumption of the vehicle at the time of measurement
- A couple of possible options
  - Simplest would be to use common emission factors such as COPERT to estimate vehicle CO<sub>2</sub> in g/km
    - Multiply  $CO_2$  in g/km with remote sensing ratio to  $CO_2$  e.g.  $NO_x/CO_2$
    - Assumes emissions factors for CO<sub>2</sub> are good …
  - Calculate fuel consumption based on vehicle specific power (VSP)
    - A physics-based approach
    - We have all the information we need to do this



#### **Real-World Emission Factors to improve inventories**



- Remote sensing data can be directly aligned with COPERT emission factor categories
  - Vehicle type
  - Euro standard
  - Vehicle weight / engine size
- Can go beyond COPERT emission factor categories
  - Road gradient
  - Acceleration
  - Ambient temperature
  - Vehicle mileage
  - Vehicle manufacturer and model
  - Specific vehicle technologies
- Can develop *local* and *national* emission factors

#### **Remote sensing improves model performance**







- AQ problems linked to congestion, road gradient and street canyon
- 4 week monitoring campaign at two locations
- Measure emissions from vehicles across the local fleet
- Calculate **local** emission factors
- Real-world emissions from vehicles are significantly higher than inventory emission factors

COPERT Off-hill

#### **Remote sensing improves model performance**





- Real-world emission factors provide input into AQ models
  - Air quality modelling using real-world emission factors showed significant improvement in capability predict of NOx and NO<sub>2</sub> concentrations
- ⇒ RS provides improved evidence base to inform policy strategies to improve air quality

#### Linking ANPR cameras with Ricardo's Real World Emissions Database & Emissions Processor





© Ricardo-AEA Ltd 20

#### **Summary**



- Remote sensing provides comprehensive real-world emissions measurements
  - Measures the full fleet over a wide range of conditions
  - Capable of measuring regulated (NOx, PM, CO, HC) and unregulated pollutants (NO<sub>2</sub>, NH<sub>3</sub>)
  - Provides understanding of emissions by vehicle, type fuel type, vehicle model, aftertreatment technology...
  - Assess the effectiveness of retrofits and new abatement technologies
  - Understand deterioration with vehicle mileage and impact of ambient temperature
- Capability to develop full fleet emission factors in g/km to improve emission inventories and to improve the evidence base for AQ modelling of policy scenarios
- Support Clean Air / Low Emission Zone strategies and other policy options
  - At modelling stage to provide robust evidence to inform decision making
  - Surveillance data to support Clean Air and Low Emission Zone compliance



## Thank you for your attention

### Find out more @ https://ee.ricardo.com/air-quality/casestudies/remote-sensing-blog-2

Rebecca Rose rebecca.rose@ricardo.com