

Non-Exhaust Emissions from Road Traffic

Roy M. Harrison University of Birmingham

The changing air pollution climate

- Road traffic
 - Catalytic convertors have hugely suppressed exhaust CO and VOC emissions
 - Euro 6 is reducing NO_x at last
 - Diesel particle filters are highly effective
 - Non-exhaust emissions of PM require regulation
 - Battery-electric vehicles

Regulations that force the best available technology have dramatically lowered black carbon emissions

Source: Based on calculations from Michael Walsh, 2010

mg BC / km

Trends in Black Carbon based on monthly mean concentrations at Marylebone Road, London.

What are the non-exhaust particle emissions from road traffic?

- brake dust (from disc and pad)
- tyre dust
- road abrasion particles
- resuspended road surface dusts

PM_{2.5} emissions from road transport sources according to the UK and German Inventories. The scale on the y-axis applies to both countries

Activity 🔶 Road abrasion 📥 Brake wear 💶 Tyre wear — Road transport - exhaust

Total exhaust and non-exhaust road transport emissions of PM2.5 from EU28 countries

Reference: Allan et al., 2021. non-exhaust vehicle emissions of particulate matter and VOC from road traffic: A review, *Atmos. Environ.*, **262**, 118592 (2021).

 PM_{10} and $PM_{2.5}$ concentrations modelled using ADMS-Urban at five major roads in London apportioned by emission type (µg m⁻³) for 2016 and 2020. 'Other' represents the contribution of non-traffic sources in the LAEI.

Source - AQEG Report: Non-Exhaust Emissions from Road Traffic

Speed dependence of emissions factors for brake and tyre wear. Each are normalised to their respective emissions rate at 100 km h⁻¹. In this plot speed refers to the average traffic speed and not the instantaneous speed of any vehicle

Average contribution (%) of PM₁₀ and PM_{2.5} sources for 12 months of study

From Amato et al., ACP, 16, 3289-3309, 2016

Battery-electric vehicles (BEV)

- It has been suggested that BEV are heavier than their equivalent ICE vehicle.
- A greater vehicle weight implies greater abrasion emissions and dust resuspension.
- However, regenerative braking reduces brake wear.
- The net effect is uncertain

ELECTRIC VEHICLES:- Will they lower PM emissions?

Estimation of Electric Vehicle Emission Factor PM₁₀ (petrol)

Total emission factors with / without regenerative braking

The absolute values of total emission factor estimated for petrol, diesel and battery electric vehicles, the latter with 0%, 90% and 100% regenerative braking on different road types.

The percentage change in emission factor from a diesel (left panel) or petrol (right panel) vehicle to a battery electric vehicle with 0%, 90% or 100% regenerative braking.

UK emissions of NMVOCs from all road transport by sources according to the United Kingdom National Atmospheric Emissions Inventory

Reference: Allan et al., 2021. non-exhaust vehicle emissions of particulate matter and VOC from road traffic: A review, *Atmos. Environ.*, **262**, 118592 (2021).

THANK YOU

