Modelling sources of fine particles (PM_{2.5}) in UK cities

Particles are a mix of components that persist for days

PM_{2.5} includes local and distant sources (long atmospheric lifetime)

Stricter World Health Organization (WHO) Guideline

(https://apps.who.int/iris/handle/10665/345329)

Source: WHO Facebook page

Simulate PM_{2.5} with the 3D Model GEOS-Chem

3D Atmospheric Chemistry Transport Model

GEOS-Chem manual: <u>http://acmg.seas.harvard.edu/geos/</u>

Simulate PM_{2.5} with the 3D Model GEOS-Chem

3D Atmospheric Chemistry Transport Model

GEOS-Chem manual: http://acmg.seas.harvard.edu/geos/

Test Contribution of Potentially Influential SourcesLocalNationalRegional

City

County

Nearby large cities

Transport

Agriculture

Mainland Europe

Desert Dust

Assess Validity of Model using Reference Monitors

Use total PM_{2.5} observations from the Automatic Urban and Rural Network (AURN) to assess model

Comparison of annual mean surface concentrations of PM_{2.5} for 2019

74% of UK exceeds updated WHO guideline

Consistent spatial pattern (**R = 0.66**) and variance (**slope = 1.0**). Model **16% less** than observations

Assess Validity of Model using Reference Monitors

Use PM_{2.5} composition measurements from UKEAP and EMEP sites to assess model

Model underpredicts observed (sulfate, nitrate, ammonium) and possibly overpredicts unobserved (dust) components. Model captures variance of components from NO_x (nitrate) and ammonia (ammonium)

Assess Validity of Model using Reference Monitors

Also evaluate model skill at reproducing observed seasonality in PM_{2.5}

Enhancements in cold months and when ammonia emissions from agriculture peak due to application of synthetic fertilizer in March-April

Contribution of Sources to annual PM_{2.5} in Leicester

Contribution of Sources to PM_{2.5} seasonality in Leicester

Comparable contributions from road traffic (exhaust) and shipping emissions

Agriculture largest contributor in every month except February

Mainland Europe contribution peaks in November to April, due to long atmospheric lifetime of PM_{2.5} in winter (cold temperatures, calm conditions, low planetary boundary layer)

Corroborating Evidence from Low-Cost Sensors

Low-cost network of Zephyr® sensors distributed throughout Leicester since November 2020

Corroborating Evidence from Low-Cost Sensors

According to low-cost sensors, local sources contribute **5-11%**. Similar to the model (**3-5%**)

Results for Large Cities like London and Birmingham

Conclusions and Acknowledgements

- Under-regulated agricultural sector dominates PM_{2.5} year-round
- Mainland Europe makes large seasonal contribution to PM_{2.5} in November to April.
- Policies targeting local sources only likely to be effective for large cities like London
- Results reinforce the need for continued and strengthened international agreements and measures to control ammonia emissions from agriculture
- Anthropogenic dust is a large source of uncertainty due to challenges representing emissions and evaluating the model

Support provided by Leicester City Council from a Defra-funded Air Quality Grant

Department for Environment Food & Rural Affairs